Pioneering New Filters for X-ray Astrophysics

Completed Technology Project (2012 - 2014)

Project Introduction

The x-ray microcalorimeter is fundamentally a thermal sensor and as such is sensitive to all forms of electromagnetic and particle radiation. To optimize such a device for use as an x-ray spectrometer, it is therefore necessary to block all forms of radiation that are not in the x-ray energy band (typically 0.1-10 keV). If not blocked, radiation with energy lower than the x-ray band would contribute numerous, un-resolved photons, thereby adding noise and degrade the energy resolution. This requirement has been generally solved by placing a series of thin metalized films between the sensor and the outside world of the instrument. The problem is, in order to manufacture films thick enough to be robust, the transmission in the lower energy part of the x-ray band almost lost. To get around this problem, we propose a completely new type of x-ray filter that will have a net transmission efficiency of ~ 40 - 60% all across the soft x-ray band between 0.1 and 1.0 keV, which will provide up to a 100-fold increase in soft x-ray transmission in this energy band over existing filters.

We plan to produce filters with holes so small that longer wavelength photons are unable to propagate through, whereas the shorter wavelength x-ray photons simply pass through the holes unimpeded. This type of filter is called a "grill filter" and the desired functionality is possible due to the large separation in frequency between the block and pass bands.

Anticipated Benefits

N/A

Primary U.S. Work Locations and Key Partners

Pioneering New Filters for X-ray Astrophysics

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3

Center Independent Research & Development: GSFC IRAD

Pioneering New Filters for X-ray Astrophysics

Completed Technology Project (2012 - 2014)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland

Primary U.S. Work Locations

Maryland

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

Stanley D Hunter

Principal Investigator:

Richard L Kelley

Co-Investigator:

James A Chervenak


Center Independent Research & Development: GSFC IRAD

Completed Technology Project (2012 - 2014)

Pioneering New Filters for X-ray Astrophysics

5 6 Applied Development Research

Demo & Test

8 9

7

Technology Areas

Primary:

- · TX08 Sensors and Instruments
 - □ TX08.1 Remote Sensing Instruments/Sensors
 - └ TX08.1.1 Detectors and Focal Planes

